для обсуждения, выкладываю и здесь текст более подробного описания моего предложения.
Некоторые мысли по поводу возможных схем создания атомных электростанций безопасных в эксплуатации. Сергей КоваленкоДальнейшее развитие атомной энергетики требует создания более безопасных объектов, нежели это есть сегодня.
Имеют место такие задачи, как энергонезависимость систем охлаждения атомных реакторов, быстрая и надежная изоляция аварийных атомных реакторов.
Представляется возможным решить указанные задачи следующим образом.
Системы теплоотвода выполнить в виде пассивных элементов - тепловых труб.
Активную зону реактора размещать под землей в шахте гарантированно ниже уровня грунтовых вод.
Тепловые трубы, нагреваемый конец которых расположен ниже охлаждаемого, будучи размещенными в гравитационном поле, являются весьма эффективными переносчиками тепловой энергии. Помимо этого, они представляют собой герметичные элементы, работающие автоматически при возникновении кипения теплоносителя в нагреваемом конце трубы, и не требуют дополнительного энергообеспечения. Поскольку парообразный теплоноситель поднимается к охлаждаемому концу конвективно, а сконденсированый на нем теплогоситель стекает вниз к нагреваемому концу трубы под воздействием собственного веса.
Активная зона реактора, расположенная в шахте ниже уровня грунтовых вод, в случае возникновения критической аварийной ситуации, может быть быстро и эффективно изолирована. Что воспрепятствует загрязнению окружающей среды продуктами деления.

На предлагаемой схеме:
Вертикально размещенная тепловая труба(1), в нижней части которой размещен атомный реактор, погруженный в жидкий теплоноситель тепловой трубы.
Тепловая труба размещена в вертикальной шахте.
Верхняя часть тепловой трубы представляет собой радиатор естественного охлаждения (5), снабженный защитой от внешних катастрофических воздействий и самотеком охлаждаемый внешней природной охлаждающей средой(7). Такой средой может быть атмосферный воздух, либо вода водоема, гарантированно пополняемого из естественных источников. При этом первый вариант представляется более надежным в силу надежности существования атмосферы.
Параметры тепловой трубы (1) и ее радиатора (5) должны полностью гарантированно обеспечивать теплоотвод всей тепловой энергии, выделяемой реактором в штатном (некритическом) состоянии.
Несколько ниже радиатора (5) внутрь тепловой трубы (1) вмонтирован радиатор-теплообменник (3), являющийся горячим концом герметичной тепловой трубы (2).
Верхний охлаждаемый конец (4) тепловой трубы (2) в первом варианте предлагаемой схемы является нагревательным элементом котла турбины.
Теплообменник (3) обтекается конвективно-восходящими парами теплоносителя тепловой трубы (1) и должен быть таким, чтобы при работающем охлаждении теплообменника (4)
тепловой трубы (2) на радиаторе (3) конденсировалось максимальное количество теплоносителя тепловой трубы (1), испаряемого теплом, выделенным реактором.
В то же время, теплообменник (3) при неработающем охлаждении теплообменника (4)
тепловой трубы (2) должен свободно пропускать конвективно-восходящий пар теплоносителя тепловой трубы (1), испаряемый теплом, выделенным реактором для того, чтобы весь этот пар мог быть сконденсирован теплообменником (5).
Помимо этого, возможно конструктивно окажется уместным снабдить теплообменник (3) центральным вертикальным сквозным отверстием, не имеющим сообщения с внутренним пространством тепловой трубы (2), но позволяющим осуществлять перезагрузку топлива реактора, а в рабочем состоянии закрываемым паровым экраном.
Соотношения прочности тепловых труб, их внутренних объемов и количества теплоносителей, находящихся внутри них, могут быть выбраны такими, чтобы переход всех объемов теплоносителей в парообразное состояние не приводил к разрушению тепловых труб. Другими словами, тепловые трубы при полном испарении теплоносителей, вызванных критической ситуацией, оставались бы замкнутыми, герметичными.
Ниже глубины (H), которая в свою очередь гарантированно ниже уровня грунтовых вод, представляется необходимым размещение запечатывающего устройства.
Представляется возможным выполнение такого устройства в виде необходимого количества запечатывающего материала, расположенного вокруг тепловой трубы (1) и размещенного вокруг этого материала пирозаряда необходимой мощности.
Использование запечатывающего устройства выполняется в случае возникновения критической аварийной ситуации.
В нижней части шахты необходимо предусмотреть устройства рассредоточения активной зоны реактора с целью наиболее вероятного прекращения цепной реакции независимо от внешних обстоятельств.
Во втором варианте исполнения тепловой трубы (2) турбина энергогенерирующей установки может располагаться непосредственно в тепловой трубе (2).
Во втором варианте исполнения тепловой трубы (1) между теплообменником (5) и теплообменником (3) тепловая труба (1) может быть разделена дополнительным теплообменнтком на две взаимогерметичные тепловые трубы, верхнюю – чистую и нижнюю – грязную. Такое решение может быть применено с целью недопущения заполнения надземных конструкций грязным теплоносителем тепловой трубы (1).
31 марта 2011г.